Closing Wed: Closing Fri:
My extra office hours today 1:15-3:00pm in Com. B-006 (next to MSC) Quick review of foundations:
Definition of Definite Integral:
If $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

$=$ "signed" area between $f(x)$ and the x -axis from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$.
FTOC(1): Areas are antiderivatives!

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

FTOC(2): $F(x)$ any antiderivative of $f(x)$,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Entry Task: Evaluate

 4 $\int_{0}^{4} e^{x}+\sqrt{x^{3}} d x$
5.4 The Indefinite Integral and Net/Total Change

Def' n : The indefinite integral of $f(x)$
is defined to be the general
antiderivative of $f(x)$.
And we write

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is any antiderivative of $f(x)$.

Net Change and Total Change

Assume an object is moving along a straight line (up/down or left/right).
set up:
Let $\mathrm{s}(\mathrm{t})=$ `location of object at time t^{\prime}
$\mathrm{v}(\mathrm{t})=$ 'velocity at time t^{\prime}
positive $v(t)$ means up/right negative $v(t)$ means down/left

The FTOC (part 2) says

$$
\int_{a}^{b} v(t) d t=s(b)-s(a)
$$

i.e. `integral of rate of change of dist.' = `net change in distance’

5.5 Substitution - Motivation:

1. Find the following derivatives
Function Derivative?
$\cos \left(x^{2}\right)$
$\sin \left(x^{4}\right)$
$\mathrm{e}^{\tan (x)}$
$(\ln (x))^{3}$
$\ln \left(x^{4}+1\right)$
2. Rewrite each as integrals:

$$
\begin{gathered}
d x=\cos \left(x^{2}\right)+C \\
d x=\sin \left(x^{4}\right)+C \\
d x=\mathrm{e}^{\tan (x)}+C \\
d x=(\ln (\mathrm{x}))^{3}+C \\
d x=\ln \left(\mathrm{x}^{4}+1\right)+C
\end{gathered}
$$

3. Guess and check the answer to: $\int 7 x^{6} \sin \left(x^{7}\right) d x=$

Observations:

1. We are reversing the "chain rule".
2. In each case, we see
"inside" = function inside another
"outside" = derivative of inside

To help us mechanically see these connections, we use what we call:

The Substitution Rule:

If we write $u=g(x)$ and $d u=g^{\prime}(x) d x$, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

